Referencias | References

Referencias completas de vocabulario, eventos, crónicas, evidencias y otros contenidos utilizados en los proyectos relacionados con biotecnología y neurociencia de la KW Foundation.

Full references of vocabulary, events, chronicles, evidences and other contents used in KW Projects related to biotechnology and neuroscience.

Navegue por el glosario usando este índice.

Especial | A | B | C | D | E | F | G | H | I | J | K | L | M | N | Ñ | O | P | Q | R | S | T | U | V | W | X | Y | Z | TODAS

Página: (Anterior)   1  ...  9  10  11  12  13  14  15  16  17  18  ...  105  (Siguiente)


Logo KW

Biotech Incubators Boom [455]

de System Administrator - lunes, 24 de marzo de 2014, 16:51

Incubator Boom

From San Francisco to St. Louis, biotech incubators are proliferating across North America. Can they deliver on their promise of fueling the economy?

Fuente: The Scientist - By Kerry Grens | March 1, 2014


BIOTECH SUPPORT: The Helix Center Biotech Incubator in St. Louis, launched in July 2012, is currently home to more than a dozen young biotech companies.ST. LOUIS ECONOMIC DEVELOPMENT PARTNERSHIPOn the second floor of a low-slung office building west of downtown Chicago, piles of boxes await unpacking as the final touches, such as the meeting room’s interactive SMART Board conferencing screen, are installed. In laboratories down the hall, fume hoods have been hung, benches wiped clean, and the autoclave put in place, ready for the building’s first tenants to begin their research. EnterpriseWorks Chicago is the newest of the University of Illinois’s business incubators, which offer cheap rent to entrepreneurs in the early stages of commercialization. At the new facility, enterprising life scientists can rent a desk in a shared office for $100 a month, and an additional $600 secures a spot in the wet lab. All members get access to the university’s library, facilities, and expertise.

EnterpriseWorks Chicago is one of a number of biotech incubators popping up across the country. According to the National Business Incubation Association (NBIA), the number of business incubators has grown by two orders of magnitude in the past three decades, with 1,250 US incubators supporting up-and-coming businesses in 2012, compared with only a dozen such facilities in 1980. More than a third of US incubators cater to technology firms, according to NBIA, and life-science incubators are popping up not just in established biotech clusters, such as Boston and San Diego, but also in emerging communities like Albuquerque and New Orleans. (See map below, and also “Biotech on the Bayou,” The Scientist, October 2010.)

Mark Long, the president of biotech consultancy Long Performance Advisors, characterizes the current incubator trend as less of a “boom or bubble” and more of a “gold rush.” “I think a lot of people [in economic development] see biotech as the pot of gold at the end of the rainbow, and they see it as their salvation,” he says.

The Helix Center Biotech Incubator in St. Louis, for instance, launched in July 2012 in part to help local industry scientists start their own companies following layoffs at Pfizer and Monsanto, says Beth Noonan, the vice president of innovation and entrepreneurship at the St. Louis Economic Development Partnership. In addition, the incubator aims to capitalize on the intellectual wealth of the city’s heavy-hitting academic research facilities, such as Washington University and the Danforth Plant Sciences Center. And in Toronto, the virtual incubator Blueline Bioscience launched last fall to help build companies from the ground up by giving them access to funding, lab space, and expertise. The motivation is to feed what Blueline’s president Stefan Larson describes as the growing appetite of large pharmaceutical and biotech companies for purchasing small biotech businesses. “Big pharma and even big biotech firms are facing this problem of their pipelines drying up and their internal R&D efforts not being as productive as they need them to be, so they’re shifting huge amounts of dollars into what’s called external R&D,” Larson says. “That demand has surged dramatically in the last five years.”

Whether such incubators will deliver that pot of gold to local economies, however, remains a matter of debate. While many in politics, economic development, and business are convinced that investments in incubators offer handsome returns, there is scant evidence that incubated companies have a greater impact on the economy than those that go it alone. Nevertheless, incubators offer entrepreneurs a wealth of services, a network to plug into, and cutting-edge lab space that isn’t always easy to come by, and incubated biotech companies that survive to make a profit regularly cite this support as key to their success. Moreover, investments from both private funders and all levels of government continue to flow in, fueling a widespread incubator boom.

Return on investment

On a tour of the new EnterpriseWorks Chicago facility this January, I compliment executive director Kapila Viges on her choice of wall colors—bright lime green, warm buttercream, and a shiny slate gray. The latter, covering a wall in the shared office space and in the kitchen, actually works as a dry-erase board, Viges points out. “Everywhere you go you can think, innovate, and collaborate,” she says.

By offering month-to-month leases and easy access to investors, the incubator targets Chicago’s business embryos—ideas in need of testing before their creators are able to commit to setting up shop. EnterpriseWorks, like other life-science incubators, is more than just desks and bench space; it also provides entrepreneurs with access to services and mentorship. Similarly, at the Science Center in Philadelphia, one of the oldest life-science incubators, entrepreneurs can access a cadre of vetted professionals—a corporate attorney, say, or an advisor on regulatory approval. “An incubator is plugging you into that existing network and that community,” says Chris Laing, the vice president of science and technology at the Science Center.

But do biotech incubators really boost small business success? In 1997, Lawrence Molnar, director of the Center for Business Acceleration and Incubation Studies at the University of Michigan, and his colleagues collected information on Michigan companies that had gone through an incubator. They found that several years after the companies began operating on their own, 87 percent were still in business (NBIA Publications, 1996). “That’s an extremely high survival rate,” says Molnar, also the president of the Michigan Business Incubator Association. For comparison, the Small Business Administration says that about half of all new companies die within five years.

Another oft-cited study, commissioned by the US Economic Development Administration (EDA) and published in 2008, found that business incubators are more effective at creating jobs than investment in roads, buildings, and sewer projects (Grant Thornton, LLP and ASR Analytics, LLC, 2008). “For every $10,000 investment, business incubators created between 46 and 69 jobs,” says Matt Erskine, the acting assistant secretary of commerce for economic development at the EDA, “which is a pretty significant return.”

These studies are unlikely to reveal the whole story, however. In perhaps the most comprehensive analysis of incubators to date, Alejandro Amezcua of the Whitman School of Management at Syracuse University uncovered a much more nuanced reality. By comparing thousands of companies at US incubators with similar, nonincubated businesses, Amezcua found evidence that incubated companies tended to fail sooner than those that operated outside of an incubator. But Amezcua doesn’t necessarily think that the study, which he completed as part of his PhD research at Syracuse University, points to a negative impact of incubators on start-up survival. Rather, he suggests, his research may support the notion that an incubation period can help researchers recognize poor ideas faster, actually saving money in the long run. “An incubator could be helping an entrepreneur cut her losses sooner rather than later if her idea is not going to make it to the market,” he says.

Long says that culling is expected. “Part of the function of the incubator is to weed out the wheat from the chaff early on, which saves a lot of money.”

Amezcua also uncovered a number of other interesting and overlooked factors affecting the success of incubated businesses. For instance, specialized incubators in a crowded environment, say, biotech in San Diego, don’t appear to help companies as much as incubators that establish a new niche in a region. And characteristics of the entrepreneurs themselves also matter, with female entrepreneurs reaping more benefits from incubators than male executives, for example. The bottom line, Amezcua says, is “we really don’t know how well any of these things do.”


DIVERSE ASSISTANCE: The Science Center in Philadelphia is one of the oldest life-science incubators in the U.S., offering entre­preneurs access to a variety of vetted professionals, from corporate attorneys to regulatory advisors.


Without randomized, controlled studies comparing the success of companies with and without time spent in an incubator, “it’s notoriously difficult to put a firm, absolutely unassailable figure on returns,” admits Erskine. “You can’t say with absolute certainty that the return is going to be x percent or result in x number of jobs.”

But the uncertainty surrounding the impact of incubators hasn’t deterred investors, most of whom are more than willing to help finance a new incubator facility, says Jasper Welch, the CEO of NBIA. Moreover, once created, life-science incubators are typically easy to fill. After only a year and a half of operation, St. Louis’s Helix Center is at about 75 percent occupancy, and EnterpriseWorks Chicago had a couple of committed clients before the doors even opened.

The hard part is finding a steady stream of money to keep the operation afloat, especially given the fact that the start-ups themselves, with very little money and a lot of instability, tend to make bad tenants. Add to these challenges the recent tendency of investors to shy away from giving money to individual young biotechs. “The funding stream for life-science technologies, particularly early-stage technologies, has dried up considerably, and the appetite for risk has also been off significantly since the recession,” says Steve Tang, the CEO of Philadelphia’s Science Center.

For this reason, incubators are usually subsidized by local, state, and/or federal government funds. According to Erskine, the EDA has invested $60 million in business incubators since 2009. The promise of job growth—which Amezcua’s study did support as a benefit of incubators—is a prime attraction for communities. “We want to be a leader in growth industries and ride the benefit of that development,” says Chicago Deputy Mayor Steve Koch, who—along with Mayor Rahm Emanuel, industry representatives, and start-up supporters—has already hatched plans for yet another biotech incubator in the city. “Our perception is, the more we can foster the start-up community, the better.”

But while it’s entirely possible that incubators are indeed the economic drivers many expect them to be, the paucity of research demonstrating the benefit of incubators has critics such as Scott Shane, an entrepreneurship researcher at Case Western Reserve University, voicing concerns about spending so much taxpayer money on the ventures. “Every dollar that’s spent on an incubator means a dollar not spent on anything else” that might grow the economy, says Shane. He points out the irony of the situation: the companies that these incubators support are bound by regulatory authorities to demonstrate the safety and effectiveness of their products with good science, yet the policymakers who fund the incubators are not held to such standards to guide their decision making. “As an academic economist it bothers me that policymakers put money into policies without some evidence that the policy works.”

And with the growth of biotech incubators in the last few years, there is the risk that they might outpace the demand. “I think you’re going to continue to see activity,” says Welch at the NBIA. “Whether or not the market can support it, either through direct market response where the companies are successful or [through] subsidies, I don’t have an answer. At some point in time you probably reach an upper limit. Have we reached it yet? I’m not sure.”



Logo KW

Biotecnología [24]

de System Administrator - lunes, 30 de diciembre de 2013, 17:43

La “biotecnología” es la tecnología basada en la biología. Fundamentalmente es utilizada en agricultura, farmacia, ciencia de los alimentos, medio ambiente y medicina. Se desarrolla con un enfoque multidisciplinario que involucra varias disciplinas y ciencias como biología, bioquímica, genética, virología, agronomía, ingeniería, física, química, medicina y veterinaria, entre otras. Para la Organización de la Cooperación y el Desarrollo Económico (OCDE), la biotecnología se define como la "aplicación de principios de la ciencia y la ingeniería para tratamientos de materiales orgánicos e inorgánicos por sistemas biológicos para producir bienes y servicios".


Logo KW

Birriel Valdi, Susana Lucía [280]

de System Administrator - lunes, 30 de diciembre de 2013, 18:25

Multi instrumentista y profesora (Montevideo, 11 de agosto de 1942).

Logo KW

Bisfenol-A, Plastic Planet [1077]

de System Administrator - jueves, 29 de enero de 2015, 12:21



El bisfenol A, usualmente abreviado como BPA, es un compuesto orgánico con dos grupos funcionales fenol. Es un bloque (monómero) disfuncional de muchos importantes plásticos y aditivos plásticos.

Sospechoso de ser dañino para los humanos desde la década del 30, muchos medios de comunicación resaltaron con frecuencia los riesgos del uso de bisfenol-A en productos de consumo después de que varios gobiernos emitieran informes cuestionando su seguridad, lo cual tuvo como consecuencia que algunas cadenas de venta retiraran los productos que contuvieran este compuesto. Un informe en el 2010 de la FDA (Administración de Alimentos y Fármacos) de Estados Unidos generó mayor conciencia con respecto a la exposición de fetos, infantes y niños pequeños.

El bisfenol-A es usado principalmente para hacer plásticos. Desde hace más de cincuenta años hay en el mercado productos que contienen bisfenol-A. Es un monómero clave en la producción de resina epoxi y en la forma más común de policarbonato de plástico. El policarbonato de plástico, que es transparente y casi inastillable, se usa para fabricar una gran variedad de productos comunes, incluyendo biberones y botellas de agua, equipamiento deportivo, dispositivos médicos y dentales, composites dentales y sellantes, anteojos orgánicos, CD y DVD, y electrodomésticos varios. También se usa en la síntesis de polisulfonascetonas de poliéter, como antioxidante en algunosplastificantes y como un inhibidor de polimerización en el PVC. Las resinas epoxi que contienen Bisfenol-A se usan como recubrimiento en casi todas las latas de comidas y bebidas, sin embargo, debido a problemas de salud, en Japón el recubrimiento de epoxi fue remplazado por un filme de poliéster. BPA es también precursor de unpirorretardantetetrabromobisfenol A, y se usa como fungicida. Además, BPA es un revelador de color para papel térmico y en papel NCR. Productos pasados en BPA se usan en moldes de fundición y como recubrimiento para tuberías de agua.


La producción mundial de bisfenol-A en 2003 fue estimado en más de 2 millones de Toneladas. En Estados Unidos, es fabricado por Bayer MaterialScience (División deBayer), Dow Chemical Company, GE Plastics, Hexion Speciality Chemicals y Sunoco Chemicals. En 2004, estas compañías produjeron más de 1 millón de Ton de Bisfenol-A, desde apenas 7260 Ton en 1991. En 2003, el consumo anual de EEUU fue de 856 mil Ton, de las cuales el 72% se usó para Plástico de policarbonato y un 21% para resinas epoxi. Menos de un 5% de todo lo producido se usa en aplicaciones de contacto con alimentos.


Algunos plásticos tipo 3 pueden liberar Bisfenol-A.

Algunos plásticos tipo 7 pueden liberar Bisfenol-A.


Los principales afectados son en su mayoría los bebés, tanto en su etapa embrionaria como la de lactancia, pues es entonces cuando las hormonas tienen un papel fundamental. Es en estos momentos de su vida, cuando su madre le traspasa, ya sea a través del cordón umbilical como de la leche, todas estas hormonas que han ido acumulándose en su cuerpo.


El bisfenol A es un disruptor endocrino. Es capaz de causar desequilibrios en el sistema hormonal a concentraciones muy bajas con posibles repercusiones sobre la salud. Sus efectos tóxicos se deben al consumo de alimentos que han sido contaminados por contacto con materiales que contienen esta sustancia, tales como envases, latas o recipientes de muy diversa clase. La amplia distribución de productos con bisfenol A, especialmente en los países desarrollados, provoca una exposición continua de la población, afectando a todas las edades (desde fetos a ancianos). La presencia continua de este disruptor en el organismo se ha relacionado con un mayor riesgo de padecer diversos trastornos orgánicos.

Efectos tóxicos

Se han asociado numerosas alteraciones causadas por bisfenol A en los seres vivos, basadas en una desregulación del sistema endocrino y la producción de hormonas correspondiente:

Efectos sobre el sistema reproductor masculino

Numerosos trabajos hacen referencia a una alteración de la espermatogénesis que condiciona un descenso en los niveles de esperma, de la testosterona y en general, de la fertilidad masculina. Además, otros estudios sugieren un cambio en la conducta sexual.

Efectos sobre el sistema reproductor femenino

En mujeres, se producen cambios en la maduración de los ovocitos, disminuyendo su número y calidad. También existe algún estudio que relaciona la exposición a bisfenol A con efectos negativos sobre el endometrio, aparición de ovarios poliquísticos, abortos y partos prematuros. Por otra parte, en animales hay evidencias de quistes ováricos, endometriosis, pubertad temprana y afectación del eje hipotálamo-hipófisis-gonadal.

Efectos sobre el cerebro y el comportamiento

Diversos ensayos en animales han confirmado el efecto del bisfenol A sobre la diferenciación de las neuronas, alteración de los sistemas mediados por glutamina y dopamina y cambios en la expresión de receptores estrogénicos. También se le ha relacionado con posibles cambios en la conducta materna (menor atención hacia las crías), ansiedad, reducción de la conducta exploratoria y una feminización de los machos. En humanos se han podido establecer cambios que incluyen hiperactividad, aumento de la agresividad, aumento a la susceptibilidad de sustancias adictógenas y problemas tanto en el aprendizaje como en la memoria.

Efectos sobre el metabolismo y el sistema cardiovascular

Se han establecido asociaciones de una mayor concentración de bisfenol A con casos de diversas enfermedades cardíacas e hipertensión. Además, la exposición a bisfenol A conlleva a un aumento de los lípidos en sangre, un aumento del peso y un incremento de la lipogénesis. También puede incidir en la aparición de diabetes mellitus tipo II al aumentar la resistencia a la insulina y número de células grasas.

Efectos sobre el tiroides

Estudios en animales concluyen que el bisfenol A es capaz de afectar a la función tiroidea comportándose como antagonista de la hormona tiroidea. En anfibios, este efecto se traduce en una inhibición de su metamorfosis. La afectación del tiroides también afecta a los roedores. En el caso de los humanos, no se han realizado suficientes estudios que permitan extraer resultados concluyentes.

Efectos sobre el sistema inmune

Se ha demostrado en animales de experimentación una inducción de linfocitos T y un aumento en la producción de citoquinas, favoreciéndose así los procesos alérgicos.

Efectos sobre el intestino

Posible inflamación y alteración de la permeabilidad intestinal en animales.

Efectos carcinogénicos

Cuando el bisfenol A es metabolizado por hidroxilación y posterior oxidación, forma una ortoquinona que puede establecer enlaces covalentes con el ADN y desarrollar efectos mutagénicos y teratogénicos. Los efectos mutagénicos podrían ser los iniciadores de varios procesos carcinogénicos asociados a bisfenol A:

  • Cáncer de próstata

La actividad estrogénica de la sustancia puede derivar en un aumento del tamaño prostático y en una disminución del tamaño del epidídimo.

  • Cáncer de mama

Se ha detectado una mayor susceptibilidad mutagénica y carcinogénica a nivel de las células mamarias en mujeres debido a la estimulación estrogénica del desarrollo y división de las glándulas mamarias.


Es necesario recalcar que pese a los efectos tóxicos citados anteriormente, esto no se debe tomar como algo absoluto. El número de ensayos experimentales realizados en seres humanos no es significativo. Aunque contamos con una gran cantidad de literatura científica sobre ensayos en animales, la complejidad de extrapolar estos resultados a los seres humanos impide conocer los efectos del bisfenol A sobre los mismos.

Por otra parte, como cualquier otro disruptor endocrino, esta sustancia puede tener efectos tóxicos en pequeñas concentraciones en nuestro organismo, aún encontrándose muy por debajo de los límites tolerables de exposición fijados por los organismos competentes. La industria respalda el uso de esta sustancia apoyándose en la falta de evidencia de pruebas en humanos. No obstante, no reconoce los numerosos estudios llevados a cabo en animales que ponen de manifiesto la peligrosidad de esta sustancia y que deberían tenerse en cuenta.

En la actualidad, la EFSA mantiene que el uso de bisfenol A es seguro para el uso humano. A pesar de ello, y ante los números estudios en animales que parecen demostrar lo contrario, este organismo está llevando a cabo una reevaluación de su estimación sobre el nivel de riesgo del bisfenol A. Esta nueva evaluación se está realizando en dos etapas: en la primera se tiene en cuenta la exposición a esta sustancia y en la segunda, los aspectos que atañen a la salud humana. Los resultados no se conocerán hasta el año 2014.

Respuesta gubernamental e industrial

Desde el Gobierno tanto español como el japonés y otros organismos regulados internacionalmente, así como empresas dedicadas al sector del plástico como PlasticsEurope, opinan que las cantidades de Bisfenol A que se encuentran en los plásticos es tan mínima que apenas puede considerarse. Sin embargo, los estudios realizados por distintos grupos de investigación concluyen que lo importante no es la cantidad de Bisfenol A sino el plazo de acción de este componente en nuestro a día a día; aunque los niveles sean mínimos, el Bisfenol A llega a interferir en las funciones endocrinas. (Francisco Cimadevila, Sobre los efectos del Bisfenol A, El Mundo, 24/09/2009, sección: cartas al director.)

En países como Canadá, donde se publica una gran mayoría de artículos al respecto, se ha dado a conocer el tema a la población y, desde el propio gobierno, se prohibió inmediatamente su uso y se buscó una solución al problema que planteaban. Ante la imposibilidad de utilizar otro tipo de biberones (pues en el momento en el que fueron publicados los artículos y fueron dadas las conferencias no existían en el mercado), se difundió entre la población la idea de que no se calentaran en el microondas, ni se utilizaran con líquidos calientes, que es cuando se liberan los tóxicos que más tarde afectan el funcionamiento normal del sistema hormonal. Actualmente, a nivel internacional la empresa, Toys 'R' Us, distribuye en sus tiendas biberones y otros artículos relacionados con la alimentación de niños y bebés.

El 1 de junio de 2011, la Unión Europea prohibió la venta de biberones de plástico que lleven el componente Bisfenol A por sus posibles efectos perjudiciales para la salud. De esta forma, Europa se suma la lista de países que ya han legislado sobre el tema, como Canadá –el primero en calificar al BPA como sustancia tóxica–, y algunos estados y ciudades de EE.UU.. Perú también se une en Noviembre del 2012 a la no comercialización bajo ninguna circunstancia de producto con Bisfenol-A, Argentina adoptó en marzo de 2012 la medida de prohibir la fabricación, importación y comercialización de mamaderas que contengan Bisfenol A debido a que esta sustancia puede causar efectos tóxicos en los lactantes.


Logo KW

BitCoin [480]

de System Administrator - jueves, 3 de julio de 2014, 17:35



Written By: Peter Diamandis

Bitcoin is moving from its Deceptive phase to a very Disruptive phase. This post is going to explain why, and what you may want to do.

I’ve been tracking Bitcoin since its inception, and my confidence has grown to the point where I’m now trading in a portion of my gold holdings for bitcoin, buying it and accepting bitcoin for the Abundance 360 CEO Summit.

What exactly is bitcoin?

For starters, bitcoin is a digital currency. As of right now, one bitcoin is equivalent to about $600 USD. Bitcoin is divisible down to 8 decimal places, or 0.00000001 BTC. You can buy things with bitcoin, sell things for bitcoin, and exchange bitcoin for other currencies (and vice versa). You can also “mine” it, but we’ll get into that later (here).

At its core, bitcoin is a smart currency, designed by very forward-thinking engineers. It eliminates the need for banks, gets rid of credit card fees, currency exchange fees, money transfer fees, and reduces the need for lawyers in transitions… all good things.

Most importantly, it is an “exponential currency” that will change the way we think about money. Much the same way email changed the way we thought of mail. (Can you remember life before email?)

If you’ve followed my work, or participated in my Abundance 360 Summit, you understand that I teach and track exponential technologies using my “6 D’s” approach, looking for “user interface moments.”

Bitcoin is following the 6Ds and is on a path to go from deceptive to disruptive over the next 1 – 3 years. Allow me to explain.

Why Bitcoin is following the 6 D’s

1. DIGITIZED: Bitcoin is digitized money — it is a global, purely digital currency. Every bitcoin is traded, earned, sold, exchanged and bought in cyberspace. For this reason, it is living on Moore’s law and hopping on the exponential curve.

2. DECEPTIVE: Bitcoin software was released to the public in 2009 and for the first few years has been growing in its deceptive phase. Few heard about it, few used it and accepted it. In addition, the currency has been hard to use; therefore, it hasn’t had its “User Interface Moment” (the key transition from deceptive to disruptive). More soon.

3. DISRUPTIVE: As described below by my friend Barry Silbert (founder of Second Market), Bitcoin is about to enter its disruptive phase where its rate of acceptance and use will explode, as will its value. See below.

4. DEMATERIALIZING: Bitcoin is eliminating or dematerializing the use of physical money (bills and coins), even credit cards. But more than that, it is also dematerializing (read: eliminating) the need for central banks, lawyers and currency exchanges.

5. DEMONETIZING: Bitcoin eliminates middlemen (banks, lawyers, exchanges) and demonetizes the cost of transactions. No fees. It makes it cheaper to use, spread and share money.

6. DEMOCRATIZING: Bitcoin makes access to capital available to everyone, where there are no banks, no ATMs and no credit card suppliers. Ultimately, as we move (over the next 6 years) to a world of 7 billion digitally connected humans, Bitcoin makes currency available to anyone with a connection to the internet.

Bitcoin’s Evolution – Why it will be Disruptive Soon

My friend Barry Silbert (founder of Second Market) recently spoke as my guest atSingularity University’s Exponential Finance conference about Bitcoin. He provided an excellent overview of its near-term trajectory, summarized below. His input has also put me on the lookout for the “User Interface Moment” – that moment in time when an entrepreneur designs a piece of interface software (think Marc Andreessen and Mosaic) that makes it so easy to use bitcoin.

I’ll be reporting on those user interfaces, investing in those startups and helping to promote them.

Okay, now back to Barry Silbert’s insights. Barry outlined five phases for this digital currency that help explain where it’s been and where it’s going.

Phase 1: The period 2009 to 2011 was the early ‘experimentation phase’ for bitcoin (i.e. deceptive). Here the software is released to public and most technologists and hackers started playing with the code. During this phase, there was no apparent value to currency yet; mining bitcoin was easy and could be done by a single person on a MacBook or PC.

Phase 2: 2011 marked the beginning of the ‘early adopter’ phase (still deceptive). There was a lot of early hype and press around Silk Road (where you could buy drugs). The value went from less than $1 to over $30, then crashed. This spurs the first generation of bitcoin companies to build basic infrastructure: wallets, merchant processors, mining operations, exchanges, etc. – i.e. the early user interfaces.

Phase 3: 2012 thru mid-2014 marked the beginning of the ‘Venture Capital Phase.’ Folks like Marc Andreessen, Google Ventures, Benchmark and others have begun investing in Generation 2 Bitcoin companies. We are right in the middle of Phase 3 right now. Thousands of bitcoin companies are getting funding. Many of these are trying to create the “User-Interface Moment.”

Phase 4: Fall 2014 thru 2015 will likely see the start of the Wall Street Phase. Here we will begin to see institutional money acknowledging digital currencies as an asset class, and they will begin trading it, investing it and creating products around it. This marks the start of the disruptive phase.

Phase 5: Finally will come the ‘Mass Global Consumer Adoption’ phase — this is where bitcoin becomes a major player in the global economy. When consumers feel it is easy, safe and secure to use bitcoin. It won’t be possible until after the “User Interface Moment” materializes, but I believe, as does Barry, that this is only 1-2 years out.

So now what?

Learn, do, teach… Go experiment! Create a bitcoin wallet and buy some bitcoin. There is no better way to learn than by doing.

First, there are a few bitcoin exchanges where you can “buy” bitcoins with dollars (or other currencies). The most popular exchanges are:

For those of you in my Abundance 360 Community, we will be discussing bitcoin in more detail. We will talk about how they work, how you start investing, how you mine, how you get involved, how to create a wallet, and how to begin acquiring bitcoin.

If you aren’t a member yet, join us here:

Every weekend I send out a “Tech Blog” like this one. If you want to sign up, go and sign up for this and my Abundance blogs. Please forward this to your best clients, colleagues and friends — especially if they don’t trust bitcoin yet.

[Credit: golden bitcoin courtesy of Shutterstock]


Logo KW

Bizcocho [105]

de System Administrator - lunes, 3 de febrero de 2014, 17:57


La palabra bizcocho proviene del latín "bis coctus", que significa "cocido dos veces". El bizcocho uruguayo es frecuentemente emparentado con la pastelería alemana, más específicamente con el krapfen. Los bizcochos están hechos con diferentes tipos de masa, elaborada principalmente con harina, levadura, sal, azúcar y grasa. Tienen diferentes formas, pueden ser dulces o salados y, opcionalmente, se rellenan.


Logo KW

Blockchain en dos minutos [1785]

de System Administrator - viernes, 13 de octubre de 2017, 13:03

Comprender la Blockchain en dos minutos

Logo KW

Blockchain [1784]

de System Administrator - viernes, 13 de octubre de 2017, 13:02

Comprender la Blockchain en dos minutos

Logo KW

BMW and IBM: Cognitive Research for Cars of the Future [1744]

de System Administrator - domingo, 2 de abril de 2017, 23:24

IBM crea un piloto de apoyo inteligente para automóviles autodirigidos

IBM technology creates smart wingman for self-driving cars

by Michael Cooney

IBM patents bring machine learning tech to make automated cars safer

IBM said that it has patented a machine learning technology that defines how to shift control of an autonomous vehicle between a human driver and a vehicle control processor in the event of a potential emergency.

Basically the patented IBM system employs onboard sensors and artificial intelligence to determine potential safety concerns and control whether self-driving vehicles are operated autonomously or by surrendering control to a human driver.

The idea is that if a self-driving vehicle experiences an operational glitch like a faulty braking system, a burned-out headlight, poor visibility, bad road conditions, it could decide whether the on-board self-driving vehicle control processor or a human driver is in a better position to handle that anomaly. If the comparison determines that the vehicle control processor is better able to handle the anomaly, the vehicle is placed in autonomous mode,” IBM stated.

“The technology would be a smart wingman for both the human and the self-driving vehicle,” said James Kozloski, manager, Computational Neuroscience and Multiscale Brain Modeling, IBM Research and co-inventor on the patent.

Kozloski also noted another recently issued IBM patent that will help automated cars and human-operated vehicles more safely interact in the future.

In a nutshell, this technology uses what’s called automatic driver modeling which to watch for the behavior of a person driving a car, such as use of turn-signal, speed and other behaviors to make assumptions about that car and pass those observation onto other autonomous cars in the vicinity.

A model of the driver is generated based on the behavior patterns of the driver measured by the one or more sensors of the autonomous vehicle. Previously stored behavior patterns of the driver are then retrieved from a database to augment the model of the driver. The model of the driver is then transmitted from the autonomous vehicle to nearby vehicles with autonomous interfaces, Kozloski said.

“The whole idea with both patents is to enable a safer environment for humans,” Kozloski said.

IBM says it has patented numerous inventions that, among other things, can help vehicles become:

  • Self-learning – powered by cognitive capability that continuously learns and gives advice based on behavior of the driver, passengers, and other vehicles
  • Self-socializing –connecting with other vehicles and the world around them
  • Self-driving –moving from limited automation to becoming fully autonomous
  • Self-configuring– adapting to a driver’s personal preferences
  • Self-integrating –integrating into the IoT, connecting traffic, weather, and mobility events with changing location

Indeed, IBM is deeply involved in the self-driving car arena. In December, the company said it would collaborate with BMW and its own cognitive computer whiz Watson to develop self-driving cars that can adapt to driver preferences.

The IBM study, “Automotive 2025: Industry without borders,” amassed interviews with 175 executives from automotive OEMs, suppliers, and other leaders in 21 countries and found that by 2025 cars will be able to learn, heal, drive and socialize with other vehicles and their surrounding environment.

Some of the study’s more interesting observations included:

  • 2025, the vehicle will be sophisticated enough to configure itself to a driver and other occupants.
  • Fifty-seven percent believe vehicle “social networks” would be in place where vehicles would communicate with each other, allowing vehicles to share not only traffic or weather conditions, but information specific to a given automaker. For instance, if a vehicle was experiencing some type of problem not recognized before, it could communicate with other vehicles of the same brand to seek help on what the issue might be.
  • Analytics capabilities will help vehicles identify and locate issues, schedule fixes and even help other vehicles with similar problems with minimal impact to the driver.
  • Like other smart devices, the vehicle will be an integrated component in the Internet of Things (IoT). It will collect and use information from others concerning traffic, mobility, weather and other events associated with moving around: details about driving conditions, as well as sensor-based and location-based information for ancillary industries, such as insurance and retail.
  • Seventy-four percent of respondents said that vehicles will have cognitive capabilities to learn the behaviors of the driver and occupants, the vehicle itself and the surrounding environment to continually optimize and advise. As the vehicle learns more about the driver and occupants, it will be able to expand its advice to other mobility services options. The report also underscores considerable skepticism about fully autonomous vehicles—where no driver is required and the vehicle is integrated into normal driving conditions. A mere 8% of executives see it becoming commonplace by 2025. Moreover, only 19% believe that a fully automated environment—meaning the driving system handles all situations without monitoring, and the driver can perform non-driving tasks—will be routine by 2025.
  • Eighty-seven percent of the participants felt partially automated driving, such as an expansion of today’s self-parking or lane change assist technologies would be commonplace. Moreover, 55% said highly automated driving, where the system recognizes its limitations and calls driver to take control, if needed, allowing the driver to perform some non-driving tasks in the meantime, would also be adapted by 2025.



Logo KW

Bobina de Tesla [81]

de System Administrator - lunes, 3 de febrero de 2014, 18:12

 Bobina de Tesla

Una bobina de Tesla es un tipo de transformador resonante, llamado así en honor a su inventor, Nikola Tesla, el cual la patentó en 1891 a la edad de 35 años. Las bobinas de Tesla están compuestas por una serie de circuitos eléctricos resonantes acoplados. Nikola Tesla experimentó con una gran variedad de bobinas y configuraciones, así que es difícil describir un modo específico de construcción que satisfaga a aquellos que hablan sobre bobinas de Tesla. Las primeras bobinas y sus versiones posteriores varían en configuraciones y montajes. Generalmente las bobinas de Tesla crean descargas eléctricas cuyo alcance está en el orden de metros, lo que las hace espectaculares.

 Cine Cine


Página: (Anterior)   1  ...  9  10  11  12  13  14  15  16  17  18  ...  105  (Siguiente)