Referencias | References

Referencias completas de vocabulario, eventos, crónicas, evidencias y otros contenidos utilizados en los proyectos relacionados con biotecnología y neurociencia de la KW Foundation.

Full references of vocabulary, events, chronicles, evidences and other contents used in KW Projects related to biotechnology and neuroscience.

Navegue por el glosario usando este índice.

Especial | A | B | C | D | E | F | G | H | I | J | K | L | M | N | Ñ | O | P | Q | R | S | T | U | V | W | X | Y | Z | TODAS


Logo KW

X initiative [1118]

de System Administrator - viernes, 20 de febrero de 2015, 16:57

Google's Solve for X Program nears this year's final round

By Barry Burd

Solve for X is an online + offline community of people who believe that science and technology can cause radically positive things to happen in the world.

Each Solve for X proposal (what we refer to as a 'tech moonshot') addresses a complex, global problem with an outlier solution / perspective / approach, enabled by a novel application of existing science or technology, or a game-changing breakthrough.

The Solve for X platform helps amplify the visibility of these audacious projects and connects project leads with others in the Solve for X community who may have subject-matter knowledge, technical expertise, and other resources that can help accelerate progress on making the project a reality sooner.

Google's ambitious Solve for X initiative brings together entrepreneurs and experts to help solve the world's most pressing problems. On the initiative's website, Google compares Solve for X projects with the moon shots of the 1960s and 70s. Each Solve for moonshot project has three characteristics:

  • The project addresses a big, global problem
  • The project involves a radical new solution/perspective/approach to the problem
  • The project leverages a breakthrough in science or technology.

This year, Google Developer Group: GDG North Jersey is one of twelve worldwide satellite organizations that have been selected to screen applicants for the Solve for X program. As part of this screening, GDG North Jersey has received 72 moonshot proposals and has conducted four preliminary sessions in which a total of 24 innovators presented their ideas to panelists and other attendees. From these four preliminary sessions, Solve for X team members will select four finalists. Each finalist (from the GDG North Jersey program and from the eleven other regional programs) will be invited to join Google's Solve for X pioneer program.

GDG North Jersey ran its fourth and final preliminary session on January 17 at Stevens Institute of Technology in Hoboken, NJ. The session featured six pioneer projects, each involving an ambitious new idea. Here's a look at what some of the brightest minds who are a part of the Solve for X program contributed:

Medical diagnostic technologies

Mark Punyanitya is a biomedical engineer and co-founder of MagnePath Pty Ltd, a company whose goal is to make comprehensive, individualized health information available to medical professionals and consumers.

Among the medical diagnostic technologies, Magnetic Resonance Imaging (MRI) is one of the least invasive. MRI scanning involves no surgery, no radiation, no injections, and no barium ingestion. But MRI technology suffers from a lack of open standards. There are several large vendors of MRI equipment (SiemensPhilipsGE, and Resonance Health to name a few). Each vendor has its own hardware, its own software, and its own data storage format. In a world with approximately 3000 MRI scanners and roughly 125 million scans begin done each year, standardization is becoming critical.

MagnePath's apps analyze data from MRI scans done with any of the major vendors' hardware. One app, the FatMap app, takes data from a 30-second MRI scan and creates a color, head-to-toe map of a patient's body fat. Similar apps in MagnePath's MapApps suite map a patient's joints, muscles and liver health. Because these apps are written in Java, the apps run on PCs, Macs and Linux computers. This use of readily-available equipment reduces the cost of doing medical tests. By combining such MRI scan results with the wealth of information from wearable devices, consumers can view their total-body health summaries on any mobile device.

MagnePath's goal is to go beyond mapping by making it practical for the consumer to track and predict his or her overall health trends.

Saving the environment 

Dr. Gedi Mainelis is a professor in the Department of Environmental Sciences at Rutgers University. His moonshot involves the capture ultra-fine particulate matter from diesel exhaust.

Current filtering technologies (DPFs -- Diesel Particulate Filters) capture between 50% and 85% of particulate waste from diesel engines. But the current technologies have drawbacks. Over time, the collector that's attached to a diesel engine fills up with waste. This waste creates backpressure to the engine which results in inefficient engine operation. In addition, periodic burning to remove this waste from the collector results in the emission of nanoparticles. Because they're so small, nanoparticles present health risks above and beyond those of larger particulate emissions.

Mainelis's technology ionizes the particles from a diesel engine and then collects these particles in a container coated with a superhydrophobic substance -- a substance that can't become wet. (Inspiration for the use of this substance comes from the lotus leaf, because water naturally beads up and falls off of the leaf.) Waste can easily be washed off of Mainelis's collecting container, and the washing process doesn't emit nanoparticles.

Quenching the thirst for bandwidth

Steve Saldana's XLABS group claims to have found one of the holy grails of modern computing; namely, a method for compressing data with a 99.92% ratio without losing any of the data.

Sending large amounts of information over the Internet consumes resources, and the use of resources can be time consuming. Consider Netflix whose streaming videos account for 34% of all Internet traffic during peak viewing times in the United States. Netflix needs to reduce the amount of data that it sends to your home without losing any noticeable video quality.

To reduce the amount of data that it sends, Netflix leases a technology from According to Saldana, the eyeio technology shrinks the amount of data in half at the expense of some video quality. In comparison, the new XLABS algorithms cut the amount of data to roughly one one-thousandth of its original size without sacrificing any video quality.

XLABS's secret compression technique comes from the RITA neural network. RITA came up with this technique by experimenting with methods that neural network wasn't specifically programmed to use. (Like other neural networks, RITA can experiment by mimicking the brain's basic structure and the brain's ability to learning new things.)

For a fictionalized presentation of the work that Saldana describes, watch the Silicon Valley TV series on HBO.

Waving goodbye to beach erosion

Karlin Yeh presented an idea for countering beach erosion with renewable wave energy. Current methods employed by the US Army Corps of Engineers involve transporting and pumping large amounts of sand from offshore to the beach and spreading the sand using bulldozers. Yeh believes that this can be done better (without any expensive cargo barges, pipes or bulldozers) using submersible wave pumps.

Submersible pumps already exist for hydroelectricity and desalinization. But these pumps have very low flow capacity -- not the larger capacity required to move sand onto a beach. By taking advantage of a principle called the Coandă Effect, Yeh has built prototypes with increased flow -- evidence that such pumps can move large amounts of sand inexpensively and unobtrusively.

When Yeh's pumps operate, they add a murky quality to the water. So the best strategy will be to run such pumps off-season when tourists aren't visiting beaches. But compared with another category of pumps (the surface wave generators) submersible pumps are completely out of sight. These pumps will have little impact on people residing year-round near the beach, and will be invisible to beach goers during the regular tourist season. Yeh estimates that the use of his technology can save $36 million dollars over a 25 year period to maintain a 1,500-foot stretch of beach. That's a savings of over 90% of the current cost.

Automated speed lanes

Attorney James Finkle is on the board of directors of New Jersey Transit. Mr. Finkle envisions technology that bridges the gap between today's highway congestion and the self-driving cars of the future. This bridge technology is the creation of automated speed lanes.

When you enter an automated speed lane, you yield control of your vehicle to the lane's centralized computer system. From that moment on (until you exit the highway) the lane's computer communicates with your vehicle's electronic control module. The module controls your vehicle's speed and direction.

An automated speed lane has several advantages over conventional do-it-yourself driving. By monitoring and controlling all vehicles on a road, a central automated speed lane system can determine and implement the best cooperative driving patterns for all the vehicles in real time. The system can control vehicles for maximum fuel efficiency and optimal braking. Accidents caused by distracted drivers are no longer a concern. (In fact, on an automated speed lane, the person who would normally drive the car is free to become quite distracted. Thedriver can make a phone call, read a book, send a text message, or do whatever else needs to be done.)

Google is already experimenting with self-driving cars. But it's difficult to trust an autonomous vehicle with the job of detecting the positions and motions of all the other cars on the road. An automated speed lane bypasses the problem because each car cedes control to the centralized system -- the system with information about all the vehicles on the road.

The hot issue of personal health

Marianna Zaslavsky is a specialist in product development & business strategy. Linh Le is co-founder and CTO of FlexTraPower  and Ph.D. student at Stevens Institute of Technology. Together they propose an inexpensive solution to a massive world problem.

Tracking a person's body temperature is an important step in measuring a person's overall health. And within a population, mass measuring of peoples' temperatures can help map the spread of a disease. For example, in 2003, twice-daily temperature screening of non-patients in hospitals ended the SARS Singapore epidemic. For many diseases, knowing where they're spreading is a crucial step in stopping the spread.

Current technologies for measuring peoples' temperatures are less than perfect. For one thing, these technologies don't scale well. Newer thermometers used in hospitals take only seconds to measure a person's temperature, but even a few seconds is too much time (and costs too much money) for measuring thousands of peoples' temperatures on a daily basis. Another problem with common thermometers is that their use requires contact between patients and the health care workers. For a disease like Ebola, contact with patients can put health care workers at risk.

In the past year, the threat of Ebola has prompted airports to install infrared temperature scanners (costing about $13,000 per scanner). But these scanners yield too many false positives for widespread use. Only 10% to 16% of the people flagged by these scanners actually have a fever.

To overcome these difficulties, Zaslavsky and Le propose the use of inkjet-printed graphene strips for making inexpensive, disposable thermometers. Each thermometer has three active parts -- the graphene sensing strip, a battery, and a wireless module that sends data to a mobile device or to the cloud. These three parts are attached to an adhesive strip which a person wears for a few days. The thermometer costs less than two dollars so, after a few days, a person typically disposes of the thermometer and puts on another one.

With such inexpensive, unobtrusive technology, large populations can be monitored continuously for temperature changes. This can help significantly in the prevention of large-scale epidemics.

I asked GDG North Jersey founder Todd Nakamura about process of choosing the four finalists. "After discussing all aspects of these moonshots and reviewing the videos among our core team we've narrowed the list down to approximately ten moonshots that are under consideration.  We've shared this list with members of the Google X team, and between our two groups we're going to select the four finalists."

Each of the four finalists will present his or her moonshot at the main GDG North Jersey event at Rutgers University (New Brunswick, NJ) on February 2, 2015. Attendance at the main event is by invitation only, but GDG North Jersey will have online contests during which members of the public can request invitations to the event. For details, visit GDG North Jersey's Solve for X website or post with Twitter hashtag #solveforxnj.

What would your moonshot be? Let us know.

Related Topics: 


Google's Solve for 'X' program goes into high gear

By Barry Burd

The ambitious Solve for <X> initiative brings together entrepreneurs and experts to help solve the world's most pressing problems. On the initiative's website, Google compares Solve for <X> projects with the moonshots of the 1960s and 1970s: "Each moonshot project addresses a big, global problem, with a radical new solution/perspective/approach and leverages a breakthrough in science or technology."

The global Solve for <X> project began in February 2012 with an event run by Google employees Astro Teller, Megan Smith and Eric Schmidt. The event lead to a collaborative website where innovators share ideas and get feedback to help move their ideas forward.

The second round of Google's Solve for <X> program began in 2013. In the program, entrepreneurs and innovators from around the world submit their ideas to experts, to Solve for <X> team members and to the public at large. In the end, approximately 50 of these innovators are designated as official Solve for <X> pioneers. Along with this designation comes formal recognition from Google. (The designation does not include any formal funding, but for pioneers who seek funding, recognition from Google can be very helpful.)

This year, for the first time, Google has commissioned 12 independent groups to organize regional Solve for <X> events. One of those groups, the Google Developer Group of North New Jersey, accepts innovators' submissions from the eastern half of North America. GDG North Jersey founder Todd Nakamura said he excited to bring Solve for <X> to the east coast for the first time.  He said, "There's a ton of innovative talent in New Jersey and the rest of the region, and this program can serve as a spotlight for these brilliant pioneers who are looking to change the world in positive ways."

GDG North Jersey is conducting four preliminary sessions, in which innovators present their ideas to panelists and other attendees. From these four preliminary sessions, Solve for <X> team members will select four pioneer finalists. Each pioneer finalist will present his or her moonshot at the official GDG North Jersey event to be held on Feb. 2, 2015, at Rutgers University, New Brunswick, N.J.

GDG North Jersey ran its first preliminary session on Dec. 11 at Montclair State University. The session featured five pioneers, each presenting an ambitious new idea:

Olive Lynch spoke about Green Waste Technologies Inc. With this company's moonshot, the species Hermetia illucens (the black soldier fly) will reduce food waste and help to increase the world's food supply. The black soldier fly is an interesting species. In approximately five weeks, the fly goes from egg to larva to pupa to adult fly. The adult fly has no mouth, which makes sense only because the adult fly lives for approximately five days.

For Lynch's project, the most important stage is the larval stage. This larval stage normally lasts for about two weeks. During this stage, the larva never sleeps or rests. The larva eats almost anything that's available, including meat, vegetables, coffee and even manure. Lynch's team feeds larvae the discarded food from homes and restaurants. After a few weeks, the team harvests the larvae for use as a biofuel and as an animal feed additive. Lynch's plan turns cost into profit because the expense of dumping food waste into landfills (about $100 per ton, not including pickup fees) goes away. What was formerly waste becomes a valuable product. Similar products are currently being sold to a dog food maker, to a hog feed manufacturer and to a large-scale fish meal producer.

Mark Annett's day job involves designing medical devices and helping clients to obtain patents. But his moonshot involves the most ambitious of goals: to solve the most perplexing problem of modern physics with a comprehensive "theory of everything." Since the discovery of anti-matter in the 1920s, physicists have speculated about the preponderance of ordinary matter in the universe around us. Where has all the anti-matter gone? Annett agrees with other physicists, such as Villata and Hajdukovic , that anti-gravity is the likely cause of the expansion of the universe. Both Annett and Hajdukovic postulate that the universe has a spherical shell. However, Annett proposes a novel concept that the spherical shell is composed of anti-particles surrounding our otherwise matter-laden universe. This shell postulate helps answer several nagging questions about the unification of quantum physics and gravity. For example, with an anti-particle shell, dark matter is no longer a necessary ingredient in cosmology. (That's a relief, because since its arrival as a useful concept in the 1930s, no one has been able to observe dark matter.)

Starting with the notion of an anti-particle shell, Annett can explain black body radiation as the shell's uniform pull on all things in the universe. (Historically, the first breakthrough on black body radiation came from patent office worker Albert Einstein in 1905.) Through his work, Annett hopes to inspire others to become involved as "philosophers" in the evolution of modern science.

Richard Morris is CEO of PharmaSeq Inc. The company produces the p-Chip, a microtransponder that emits its ID number when illuminated with laser light. (At present, a p-Chip's 30-bit memory allows for over 1.1 billion unique ID numbers.) The p-Chip is about half a millimeter long and half a millimeter wide, but future versions of the chip will be 1/1000th of that size. A p-Chip can withstand temperatures between -196 and +520 degrees Celsius. (That's a lot.)

A chip of this kind has enormous potential for the growing Internet of Things, and has special applications in genetics. A particular chip can be home to a sequence of about 120 nucleic acids (a row of 120 A, T, G and C components). So to create a genome consisting of a billion letters, a system must create about 10 million p-Chips. With such large numbers involved, the task of synthesizing a genome is as much a computational problem as it is a physical problem. PharmaSeq's equipment reads the IDs of a huge number of p-Chips and sorts the chips into bins. (For example, a chip whose sequence is ATCCG needs its next nucleic acid to be T. Along with many other chips, PharmaSeq's equipment sorts this chip into the T bin.) After one round of sorting, the system adds the required nucleic acid to the chips in each bin. Then all the chips go back into the sorter for the next round. And so the process continues.

Michael Ehrlich is an associate professor in the School of Management at New Jersey Institute of Technology. Ehrlich remarked on the abundance of high-capacity fiber optic cable in Newark, N.J. Until recently, this cable has remained largely unused. Currently, the cable is used mainly for conventional, one-way Internet traffic.

Along with Newark's Chief Information Officer Seth Wainer, Ehrlich envisions Smart City Newark. This endeavor "... would be the first attempt to transform an existing US city into a fully instrumented, vendor agnostic test-bed for the insertion of IT into every imaginable aspect of urban life." In the proposed plan, Newark will nourish the use of its cable for freely-available city-wide services. Residents will tap into the network to find transportation, schedule appointments, make purchases and add new information to the system. All this happens while people are out and about thanks to the addition of new Wi-Fi towers. A key feature of the plan is the system's fully open architecture. Unlike the public networks in other cities, Newark's network infrastructure will not be managed by an independent, private company. Newark's system will have no proprietary components, so anyone wanting to "plug-in" and add services will be able to do so.

Finally, Lou Elwell of Bio Soil Enhancers Inc. spoke about SumaGrow, a replacement for fertilizer that uses microbes instead of chemicals. As far back as the 1880s, scientists have known about Rhizobia bacteria, living inside the root nodules of legumes, and helping to regulate the amount of nitrogen available to the plant. In the last 50 years (and particularly in the last 10) our understanding of the beneficial interactions between plants and microbes has grown considerably. Microbes help plants to acquire nutrients. They also help plants to resist pathogens and natural predators. Certain fungi stimulate root growth and increase a plant's efficiency in absorbing water from soil. Some microbes prevent undesirable absorption of heavy metals, salt and other natural pollutants.

During his presentation, Elwell showed pictures of the crops from fields treated with SumaGrow. For example, one picture showed a sweet potato next to a football. (The potato was bigger!) SumaGrow costs about $50 a gallon, which treats about one acre. None of the microbes in SumaGrow are genetically modified.

GDG North Jersey will host three more preliminary sessions before holding its main event at Rutgers University. The upcoming preliminary events are in New York City, in the Boston-metro area, and at Stevens Institute of Technology in Hoboken, N.J. These preliminary events are open to the public. (The main event at Rutgers is for invited guests. GDG North Jersey will have online events and contests during which members of the public can request invitations to the event. For details, keep an eye on GDG North Jersey's Solve for <X> website.)

GDG North Jersey welcomes innovators within its eastern North America region to submit ideas for consideration in the program. To do so, visit GDG North Jersey's Solve for <X> website and look for the site'sonline application form.

Related Topics: 
Logo KW

xBase [147]

de System Administrator - martes, 7 de enero de 2014, 21:18

xBase es el término genérico para todos los lenguajes de programación que derivan del lenguaje de programación dBase, originalmente publicado por Ashton-Tate.


Logo KW

XML [402]

de System Administrator - domingo, 12 de enero de 2014, 22:17

XML, siglas en inglés de eXtensible Markup Language ('lenguaje de marcas extensible'), es un lenguaje de marcas desarrollado por el World Wide Web Consortium (W3C) utilizado para almacenar datos en forma legible. Deriva del lenguajeSGML y permite definir la gramática de lenguajes específicos (de la misma manera que HTML es a su vez un lenguaje definido por SGML) para estructurar documentos grandes. A diferencia de otros lenguajes, XML da soporte a bases de datos, siendo útil cuando varias aplicaciones se deben comunicar entre sí o integrar información. (Bases de datos Silberschatz).

XML no ha nacido sólo para su aplicación para Internet, sino que se propone como un estándar para el intercambio de información estructurada entre diferentes plataformas. Se puede usar en bases de datos, editores de texto, hojas de cálculo y casi cualquier cosa imaginable.

XML es una tecnología sencilla que tiene a su alrededor otras que la complementan y la hacen mucho más grande y con unas posibilidades mucho mayores. Tiene un papel muy importante en la actualidad ya que permite la compatibilidad entre sistemas para compartir la información de una manera segura, fiable y fácil.