Neurociencia | Neuroscience


Navegue por el glosario usando este índice.

Especial | A | B | C | D | E | F | G | H | I | J | K | L | M | N | Ñ | O | P | Q | R | S | T | U | V | W | X | Y | Z | TODAS

Página:  1  2  3  (Siguiente)


Logo KW

Rats Engineered to See Infrared Light, Use It to Seek Out Water [1562]

de System Administrator - miércoles, 11 de noviembre de 2015, 20:23

Rats Engineered to See Infrared Light, Use It to Seek Out Water


The brain is a great information processor, but one that doesn’t care about where information comes from.

Sight, scent, taste, sound, touch — all of our precious senses, once communicated to the brain, are transformed into simple electrical pulses. Although we consciously perceive the world through light rays and sound waves, the computing that supports those experiences is all one tone — electrical.


Simply put, all of our senses are the same to our brain.

It’s a strange notion that’s led to some even stranger “sensory substitution” experiments.

In 1969, the late neuroplasticity pioneer Dr. Paul Bach-y-Rita designed a vision replacement setup that looked straight out of the mind of 1950s-era sci-fi master Isaac Asimov.

Picture this: rows and rows of tiny vibrating needles, 400 in total, were mounted on the back of a menacing-looking dental chair. Blind subjects sat in the chair, exposing the sensitive skin on their backs to the vibration matrix.

Mounted close to the arm of the chair was an old-school video camera, which captured black-and-white images of objects placed in front of the chair. The image from the camera was converted into a 400-pixel “image” (a kind of pressure map) using the vibrating needles. Each camera pixel corresponded to a needle in the vibration matrix — black “pixels” produced a strong jab from a corresponding needle, whereas white pixels produced only a gentle touch.

It was a big, clunky and slow setup — but it worked.

After training, blind subjects not only learned to discriminate between squiggles, shapes and faces, but could also analyze complex visual scenes — involving more than three people or partially concealed objects — with just their skin.

But here’s the real kicker: the vibrations weren’t computed in the patients’ sensory cortex; instead, theywere processed in their visual cortex.

Somehow, the patients’ defunct visual processing centers adopted the tactile information as their own. The end result? The patients “saw” with their skin.

Since then, sensory substitution has allowed the blind to see with musicread with sound, and has given balance back to motor impaired patients by providing relevant information to their tongues.

Yet all these experiments were done in patients with one or more defective senses. This led Duke neuroengineers Dr. Eric Thomson and Dr. Miguel Nicolelis to ask: what if we did this to a healthy brain? Could we “program in” additional senses?

What the heck, thought Thomson, let’s give rats infrared vision.

Let there be (infrared) light

Thomson began his experiment by designing a small bi-module implant only a few millimeters wide. The implant sent the output of a head-mounted infrared detector to a microarray of electrical microstimulators, which were fitted onto a rat’s sensory cortex (specifically, the parts that respond to touch signals coming in from their whiskers).

He then trained water-deprived rats to discriminate between three ports in a circle-shaped arena. Each of the ports emitted visible light in a random order; all the rats had to do was walk over to the lit port to get their water reward.

Once the rats learned the rules of the game, Thomson switched over to infrared.


Rat and headmounted infrared detector. Image Credit: Eric Thomson/Duke University.

Different intensities of infrared light, captured by the detectors mounted on top of the rats’ heads, were given a value and transformed into different electrical simulation patterns. The patterns were then sent to the microstimulator, which communicated the desired current pulses to the sensory cortex in real time.

We wanted the animals to process graded infrared intensities, not just binary on-or-off, said Thomson. After all, we don’t experience visible light as all-or-none.

At first, the rats seemed confused — in response to stimulation, instead of going to the infrared source, they sat and groomed their whiskers as if being touched by an external force (which in a sense they were, since their sensory cortex was being zapped).

After roughly a month of training, however, all six animals adapted to their infrared headgear, learning to forage with infrared.

We could see that they were sweeping their heads side-to-side to better detect where the infrared light waves were coming from, said Thomson. This led to them correctly picking out the water-containing port over 70% of the time.

Additional tests confirmed the rats could still detect whisker “touch information” just fine — the new infrared “sense” didn’t boot out an existing capability.

“We have implemented, as far as we can tell, the first cortical neuroprosthesis capable of expanding a species’ perceptual repertoire to include the near infrared electromagnetic spectrum,” wrote Thomson in a2013 report of the study published in Nature Communications.

Lightning-fast sensory integration

As cool as that study was, Thomson wasn’t satisfied.

For one, the rats only had one infrared detector, which severely limited depth perception. For another, the rats were technically “feeling” not “seeing” infrared, since their sensory cortices were doing all the hard work.

In a new series of experiments, reported recently at the 2015 Society for Neuroscience annual conference in Chicago, Thomson inserted three additional electrodes into the rats’ brains to give them 360 degrees of panoramic infrared perception.

The tweak boosted how fast the animals adopted infrared by almost 10 fold. When primed to perform the same water-seeking task, they learned in just 4 days, compared to 40 days with only a single implant.

“Frankly, this was a surprise,” said Thomson to Science News. “I thought it would be really confusing for [the rats] to have so much stimulation all over their brain, rather than [at] one location.”

But the biggest “whoa” moment came when he re-implanted electrodes into the rats’ visual cortex: this time, it took only a single day for the animals to learn the water task.

Why would redirecting infrared traffic to the visual brain regions speed up learning? Thomson isn’t quite sure, but he thinks it has to do with the nature of infrared light.

After all, our visual cortex is optimized to process visible light, which is very close to infrared in terms of wavelength. Maybe the visual cortex is “primed” to process infrared in a way that the sensory cortex isn’t.

Without digging deeper and looking at changes in plasticity at different levels of the visual system, however, we can’t tell for sure, says Thomson. What we do know, however, is that the visual cortex can do both jobs — visible light and infrared — simultaneously.

Augmenting senses is limited to animals for now, although biohackers are busy at work extending the human visible light spectrum into the near infrared.

Thomson’s study suggests that it’s possible — if we get “infrared eye” hardware working, our brains will likely rapidly adapt.

Frankly, I’m still amazed, Thomson said. The brain is always hungry for new sources of information, but it’s incredibly auspicious for the field of neuroprosthetics and augmentation that it can absorb this completely foreign type so quickly.

Our work suggests that sensory cortical prostheses, in addition to restoring normal neurological functions, may serve to expand natural perceptual capabilities in mammals, he said.

“And that’s why I’m excited.”

Image Credit:; Eric Thomson/Duke University

Related Topics:


Logo KW

Ray Kurzweil’s Wildest Prediction: Nanobots Will Plug Our Brains Into the Web by the 2030s [1507]

de System Administrator - lunes, 12 de octubre de 2015, 20:03


Ray Kurzweil’s Wildest Prediction: Nanobots Will Plug Our Brains Into the Web by the 2030s

By Peter Diamandis

I consider Ray Kurzweil a very close friend and a very smart person. Ray is a brilliant technologist, futurist, and a director of engineering at Google focused on AI and language processing. He has also made more correct (and documented) technology predictions about the future than anyone:

As reported, "of the 147 predictions that Kurzweil has made since the 1990s, fully 115 of them have turned out to be correct, and another 12 have turned out to be "essentially correct" (off by a year or two), giving his predictions a stunning 86% accuracy rate."

Two weeks ago, Ray and I held an hour-long webinar with my Abundance 360 CEOs about predicting the future. During our session, there was one of Ray's specific predictions that really blew my mind.

"In the 2030s," said Ray, "we are going to send nano-robots into the brain (via capillaries) that will provide full immersion virtual reality from within the nervous system and will connect our neocortex to the cloud. Just like how we can wirelessly expand the power of our smartphones 10,000-fold in the cloud today, we'll be able to expand our neocortex in the cloud."

Let's digest that for a moment.

2030 is only 15 years away…

Directly plugging your brain into the internet? Upgrading your intelligence and memory capacity by orders of magnitude?

This is a post about the staggering (and fun) implications of that future.

The Basics

The implications of a connected neocortex are quite literally unfathomable. As such, any list I can come up with will pale in comparison to reality…but here are a few thoughts to get the ball rolling.

Brain-to-Brain Communication

This will deliver a new level of human intimacy, where you can truly know what your lover, friend or child is feeling. Intimacy far beyond what we experience today by mere human conversation. Forget email, texting, phone calls, and so on — you'll be able to send your thoughts to someone simply by thinking them.

Google on the Brain

You'll have the ability to "know" anything you desire, at the moment you want to know it. You'll have access to the world's information at the tip of your neurons. You'll be able to calculate complex math equations in seconds. You'll be able to navigate the streets of any cities, intuitively. You'll be able to hop into a fighter jet and fly it perfectly. You'll be able to speak and translate any language effortlessly.

Scalable Intelligence

Just imagine that you're in a bind and you need to solve a problem (quickly). In this future world, you'll be able to scale up the computational power of your brain on demand, 10x or 1,000x…in much the same way that algorithms today can spool up 1,000 processor cores on Amazon Web Service servers.

Living in the Virtual World

If our brains can truly connect at high bandwidth, you will be able to bypass our current sensory organs (eyes, ears, touch) to the point where brain's perception of reality can be driven completely by a gaming engine — a virtual world. Likewise, the connections would exist in the motor cortex of your brain as well. When you move your limbs, imagine a corresponding set of virtual limbs (your avatar) moving perfectly in the virtual world. This is about creation of The Matrix x 1,000.

Extended Immune System

In my webinar discussion with Ray, he outlined how we already have intelligent biological devices, the size of blood cells, that kill disease. They are called T-cells. They can recognize an enemy and attack it, but they don't work on cancer, retroviruses, et cetera. In the future, nanorobots will be able to communicate wirelessly, download software when new pathogens arrives, and attack cancer, cancer stem cells, bacteria, viruses, and all the disease agents. They can also work on metabolic diseases like diabetes. They could also maintain healthy levels of everything you need in the blood, including nutrients, and basically repair and eventually replace damaged organs.

Downloadable Expertise

Remember the scene in The Matrix where Trinity needs to learn how to fly a helicopter, and Tank downloads a program teaching her how to do it? We'll be able to do this. Need to perform emergency surgery? Just download the ER doctor program. Need to learn a new language? Download it. Want to cook the perfect meal? Download the chef module. In fact, you probably won't even need to download it — which takes up memory — you'll probably just "stream" expertise from the cloud.

Expanded and Searchable Memories

We'll be able to remember everything that ever happened to us (because we'll store our memories in the cloud), and we'll be able to search that memory database for useful information. When our memories will become searchable, we'll also be able to make them contextual by cross-referencing our calendars, GPS coordinates, health data, stock market, current news, weather conditions, and anything else that might be relevant to that particular moment in time.

A Higher-Order Existence

Ray talks about how a connected neocortex will bring humanity to a higher order of existence and complexity — expanding our palate for emotion, art, humor, creativity, expression, and uniqueness. He says, "We're going to be funnier. We're going to be sexier. We're going to be better at expressing loving sentiment. We're going to add more levels to the hierarchy of brain modules and create deeper levels of expression. People will be able to very deeply explore some particular type of music in far greater degree than we can today. It'll lead to far greater individuality, not less."

While this future may sound fanciful to many, let's remember that exponential technologies are initially deceptive, before they become disruptive. And today, there are many labs around the world working on molecular machinery, CRISPR/Cas9 systems that allow us to edit our own genome, and brain-computer interfaces (through cortical implants and the field of optogenetics).

So what if these fields of technological progress double every 18 months? In 15 years (2015 - 2030), we will have a 1,000-fold improvement over today. What does a future one thousand times better look like? Perhaps it's what Ray describes…

If this future becomes reality, connected humans are going to change everything. We need to discuss the implications in order to make the right decisions now so that we are prepared for the future.

Image Credit:


Logo KW

Reality as a Service [1754]

de System Administrator - jueves, 13 de abril de 2017, 12:33

Jordan Springs in Western Sydney: 2009 vs 2017 | Image: Supplied

Nearmap eyes 'reality-as-a-service' with 3D mapping technology

By Asha McLean

The Australian-listed aerial imagery company will be giving businesses access to 3D models of what's on the ground with a new 3D mapping technology scheduled for launch later this year.

Australian aerial imagery company Nearmap has revealed that it will be launching new technology later this year, expected to give businesses access to 3D models of what's on the ground.

Having already transformed an industry that was almost non-existent, Nearmap CEO Rob Newman told ZDNet that moving into 3D is simply the next phase of reshaping the industry.

The Australian Securities Exchange-listed company has already extended its camera system to process 3D data, as an extension of the 2D collection Nearmap has been performing for years.

"We are starting to collect that content in both Australia and the US, and that will be available as a streamed subscription service to our customers," Newman explained.

"We're capturing the real world, and then allowing our customers to stream it to be presented in a variety of different forms such as textured mesh or 3D visualisations."

Internally, Newman said the imminent offering is being called "reality as a service".

The CEO said Nearmap has committed to capture all capital cities in Australia as well as the top 50 percent of the US population centres by the end of this calendar year in 3D, noting that collection is already under way.

"Instead of going out in your car and checking overhanging tree branches or slopes of a roof, for example, all of that kind of information will be available in the third dimension," he said.

Newman found himself involved in Nearmap back in 2008, when founder Stuart Nixon approached the then-venture capitalist for investment. Nearmap was instead acquired by ASX-listed Ipernica that same year, and ran as a wholly owned subsidiary of Ipernica until 2012, when Nearmap was moved to Sydney from Perth and made the primary entity of the company after the success of its first product release in 2009.

"I remember speaking with Stuart, sitting in his lounge room and him showing me a demonstration of the technology and I thought this is going to change the world, and I've been passionate about it ever since," said Nixon, who took up the role of CEO in 2015 after spending seven years on Nearmap's board.

The company's product development, technology development, and centralised functions all operate out of the Sydney headquarters. Nearmap also has a sales presence across the United States, where Newman said the company's product has gained a warm reception.

According to Newman, Nearmap created a new market when it introduced its product, as 80 percent of its customers in Australia had never before purchased aerial imagery.

In Australia, Nearmap captures imagery up to six times per year for most of the major cities and some of the larger regional towns. In the US, 70 of the country's largest cities are captured up to three times per year, with 270 cities captured at least once a year.

Insurance companies are using Nearmap to remotely assess claims; construction companies are using it to monitor the progress of developments; solar companies are using it to provide quotes and identify areas to target for new business; and local government agencies are using it to identify illegal developments.

While it's obvious what customers such as Ausgrid and Brisbane City Council are using Nearmap for, Newman said he's seen a whole range of use cases he never saw coming.

"One is Tasty Trucks, who drive the food vans around to construction sites so that the workers on site can buy lunch," he explained. "Tasty trucks was identifying where construction sites were using our imagery to plan the route of their food trucks."

Nearmap also has a partnership with Dutch telematics company TomTom.

"When you use your smartphone to plan your trip and it gives you the routing directions, they're also tracking where you're going, and when they find out that the route you took was different than what they have as a record, they look at Nearmap imagery," he explained. "They might find changes such as new roundabouts and change their routing directions as a result."

Newman believes there is real opportunity with Nearmap around driverless cars and autonomous vehicles in the future.

"When you think about what has happened with other subscription-type businesses like music and software, we're doing the same in this industry and I think there's enormous potential for this company," he said.

"Going into the third dimension and delivering reality as a service, we can't even think today about all of the applications that could bring, in the same way we would never have guessed the Tasty Trucks example.

"Once you've got that visualisation of whatever is on the ground, a developer, for example, could show what the view from the 23rd floor of a building would look like."


Logo KW

Relación entre la flora intestinal y la salud mental [1047]

de System Administrator - miércoles, 7 de enero de 2015, 15:49


La relación entre la flora intestinal y la salud mental

Hace muchos años que los científicos tienen conocimiento de la conexión entre el cerebro y el intestino. Es ampliamente conocido que una depresión nos puede distorsionar el apetito o también estar vinculada a problemas como diarrea o estreñimiento. Sin embargo, hasta hace no muchos años los investigadores creían que la comunicación entre estos dos órganos era de una sola manera: desde el cerebro hasta el intestino. Pero algunas investigaciones realizadas sobre la flora microbiana intestinal humana han revelado que este proceso de comunicación es similar a muchos otros procesos neurológicos, de ida y vuelta, es decir, del cerebro al intestino y del intestino al cerebro.

También se sabe que haciendo cambios en la flora microbiana intestinal (conjunto de bacterias que viven en nuestro intestino) es posible modificar el comportamiento humano. Esto está cambiando la forma de entender tanto los trastornos mentales como los desórdenes de alimentación.

Es sabido que cierta exposición de recién nacidos y niños pequeños es fundamental para el desarrollo de una flora intestinal robusta y que esto tiene un impacto determinante sobre el desarrollo y la función del tracto gastrointestinal, sistema inmunológico, neuroendocrino y los sistemas metabólicos.

Además, investigaciones en animales demuestran que la administración de antimicrobianos orales en ratones libres de patógenos provoca una modificación transitoria de la composición de la flora intestinal y que paralelamente se alteran algunas proteínas en el hipocampo implicadas en el desarrollo de estados de ansiedad y estrés. También se observó que después de esto, en algunos ratones adultos no había una rápida vuelta a la normalidad en la flora bacteriana y que durante este tiempo se producía una adaptación a los niveles de estrés y ansiedad.
Si tenemos en cuenta la cantidad de antibióticos que rutinariamente consumen las personas, deberíamos preocuparnos en la incidencia que estos productos pudieran tener en las distintas enfermedades mentales entre la población.

Afortunadamente también hay evidencia de que si ajustamos el nivel de estas bacterias podemos producir importantes cambios conductuales y psicológicos. En un reciente estudio, ratones con estrés inducido fueron dosificados con el probiótoco Lactobacilo rhamnosus, estos mostraron niveles más bajos de ansiedad, disminución de las hormonas del estrés e incluso cambios en los receptores del cerebro de neurotransmisores vitales para la reducción de los estados de ansiedad.

Es indudable que el uso de probióticos para el tratamiento del comportamiento humano es cada vez más evidente. En 2013 científicos de la UCLA realizaron un estudio con un grupo de mujeres que consumieron una bebida con cuatro cepas probióticas durante cuatro semanas, pasado ese tiempo las participantes mostraron una actividad sustancialmente menor en las redes neuronales que se alteran en una situación de estrés.

Hasta que se publicó el estudio de la UCLA la idea de que las bacterias probióticas administradas al intestino podrían influir en el comportamiento de las personas parecía algo poco realista. Sin duda que la capacidad de los probióticos de afectar los procesos cerebrales humanos es uno de los más emocionantes acontecimientos recientes de la investigación científica.


Logo KW

Relación Terapéutica [1773]

de System Administrator - jueves, 20 de julio de 2017, 09:49

Construyendo la relación terapéutica. Habilidades del terapeuta

Compartido por Oswaldo Paz Pedrianes

Las habilidades y características personales del terapeuta son de gran relevancia en el establecimiento de una relación terapéutica provechosa.

“La calidad de la alianza terapéutica es el predictor más robusto del éxito del tratamiento” (Safran, J. D. y Moran, J. C.)

¿Y tú por qué te hiciste psicólogo?

Esta pregunta siempre surge cuando le explicas a alguien que elegiste ese camino profesional.  Y generalmente, para responder  solemos recurrir a los tópicos habituales: siempre nos atrajo ayudar a los demás a estar mejor, o nos llamó la atención aspirar a comprender los mecanismos por los que se rige la conducta humana.

Pero para poder desarrollar con acierto el ejercicio de la terapia no basta solo con “intenciones” ni “vocaciones”. Junto a la formación académica específica, existen otros factores que inciden claramente en la calidad y en la consecución de los objetivos de la terapia. Nos referimos a las capacidades, habilidades y características personales del propio terapeuta.

Estos aspectos pueden determinar que la relación terapéutica que se establezca con el cliente tenga una calidad y fortaleza que ayude en la resolución de la problemática planteada, o por el contrario, que sea tan débil o inadecuadamente construida que genere efectos contrarios a los deseados.

No debemos olvidar que la persona que el profesional tiene delante generalmente ha llegado hasta él con la necesidad de ser ayudado, seguramente por padecer una problemática que le limita a la hora de desenvolverse en su día a día.

No es fácil dar el paso de acudir a un psicólogo. Aún hoy en día, se mantienen ciertos tabúes enraizados en nuestra sociedad que retraen a las personas a la hora de buscar este tipo de ayuda.

Por ello, como profesionales debemos ser conscientes del sufrimiento que seguramente ha padecido la persona que ha llamado a nuestra puerta, y del costo que le puede haber supuesto llegar hasta ella.

La relación terapéutica

Así, para que exista una mayor probabilidad de éxito en la terapia, el primer paso debe ser el de generar un clima adecuado de cara a la intervención. El punto central ha de ser el establecimiento de una buena relación terapéutica, que permita que los participantes en dicha relación se sientan cómodos y seguros. Para ello, debemos aplicar todas nuestras habilidades y capacidades para garantizar un contexto idóneo.

Esto no quiere decir que perdamos la perspectiva de la relación terapeuta – cliente. Hemos de utilizar nuestras herramientas en pro de lograr esa vinculación efectiva, pero no hasta el punto de desprendernos de las obligaciones inherentes al  rol profesional, descendiendo a lo que podría malinterpretarse como “una charla de amigos”.

Nuestra meta sería alcanzar ese objetivo de ayuda al otro manteniendo el equilibrio, siendo hábiles a la hora de que la balanza esté bien contrapesada.

La imagen de “profesional de bata blanca” no creemos que beneficie al demandante de ayuda, quién puede interpretar que quien está ante él es alguien rígido y difícilmente permeable a la problemática que le acucia. Y evidentemente, tampoco es favorable el otro extremo, el del profesional que traslada el mensaje de “tú y yo somos colegas”, porque cree que así genera un buen vínculo.

En ocasiones somos los mismos profesionales los que inconscientemente “boicoteamos” la relación terapéutica.

Un claro ejemplo es el expuesto por el terapeuta italiano Maurizio Coletti, y su definición del síndrome “Salvator Mundi”, indicando que “algunos terapeutas sufren una especie de furor curandi’ que hace que se impliquen en la terapia mucho más allá de los deseos de los pacientes, que se motiven más que ellos y que los abrumen con exigencias, emociones, consejos, etc. El resultado es un terapeuta que ‘desborda’ energía y del que muchos clientes y pacientes acaban por huir despavoridos”.

¿Cómo definiríamos, entonces, la relación terapéuticaGoldstein y Myers hablan de “sentimientos de agrado, respeto y confianza por parte del cliente hacia el terapeuta combinados con sentimientos similares de parte de este hacia el cliente”. Ciertamente, esto es un predictor positivo de buenos resultados terapéuticos, pero no el único.

Sí parece relevante que el terapeuta tenga unas capacidades y unas características concretas a la hora de facilitar, establecer y potenciar la relación terapéutica.

Habilidades del terapeuta

¿De qué características hablamos? ¿Están definidas? ¿Hay una fórmula mágica? Seguramente se podrían enumerar muchas y variadas, pero nos parecen muy ilustrativas las “Características personales para ser terapeuta” que exponen Cormier y Cormier; y Ruíz y Villalobos, y que son las siguientes:

  • Tener un interés sincero por las personas y su bienestar.
  • Saber y aceptar que hay estilos de vida diferentes, y creer en que todas las personas tienen aspectos positivos que pueden desarrollar.
  • Autoconocimiento: conocer los propios recursos y limitaciones.
  • Autorregulación: para que los propios problemas y dificultades no interfieran en la terapia.
  • Tener un buen ajuste psicológico general: una buena salud mental por parte del terapeuta mejora los resultados de la terapia.
  • Experiencia vital: una amplia experiencia vital facilita la comprensión de los sentimientos y vivencias de las personas a las que atendemos y la búsqueda de soluciones a los problemas de estos.
  • Haber recibido una buena formación teórica y práctica y confiar en su propia habilidad y técnicas terapéuticas.
  • Energía y persistenciaEs probable que los terapeutas pasivos y con poca energía inspiren poca confianza y seguridad a los que demandan su ayuda. Además, el logro de resultados terapéuticos requiere tiempo, por lo que se necesita paciencia y persistencia.
  • Flexibilidad: Un terapeuta debe saber adaptar sus métodos y técnicas a los problemas y características de cada persona. Además, debe estar abierto a la adquisición de nuevas competencias.
  • Cumplimiento de principios éticos y profesionales establecidos en el código deontológico de la profesión: confidencialidad, derivación de pacientes, etc.

Diversos estudios sobre la eficacia terapéutica han comprobado que un gran porcentaje del éxito de una terapia tiene mucho que ver con ese factor de habilidad personal del terapeuta.

Creemos que si bien no es suficiente para resolver una problemática, el generar una buena relación terapéutica sí es necesario de cara a dirigir a los implicados hacia resultados productivos. Y esa sí es una responsabilidad del terapeuta.

Nota del Editor

Se comparte para su descarga en PDF el documento “Habilidades terapéuticas”, firmado por Arturo Bados y Eugeni García (Universidad de Barcelona), en el que se plantean dar respuesta a preguntas como:

¿Qué características debe tener un buen terapeuta? ¿Cómo establecer una buena relación con un cliente? ¿Cómo conseguir que comprenda, esté de acuerdo con y recuerde las propuestas de evaluación y tratamiento? ¿Cómo motivarle para que coopere en el proceso de evaluación y tratamiento? ¿Cómo manejar las dificultades que surgen en la terapia? ¿Cómo lograr superar las posibles resistencias al cambio?.

Se trata sin duda de un texto de gran valor teórico-práctico en el ámbito de la práctica clínica.


Logo KW

Relaciones Dependientes [1788]

de System Administrator - miércoles, 29 de noviembre de 2017, 22:30

Relaciones dependientes: ‘Sin ti no puedo vivir’

Compartido por María Rodríguez Carbajal

Las relaciones codependientes son relaciones casi adictivas que nada tienen que ver con el amor. La persona dependiente se diluye en la otra perdiendo de vista su propia vida, sus valores y proyectos, y en última instancia su propia individualidad.

Muchas personas tienen la sensación, una vez formada una pareja, de “olvidarse de sí mismas”. En ocasiones, también aparece esta sensación una vez que la pareja se ha roto y la persona ha de reorganizar su vida sin el otro.

Con la expresión “me olvidé de mi, de mis proyectos, necesidades, amistades,…” quieren decir que dejan de verse con sus amigos, familiares, que dejan de reservarse un tiempo para ellas mismas de autocuidados, abandonan actividades placenteras, dejan de involucrarse en su carrera profesional, etc.

Todo ello no lo apartan de sus vidas porque les haya dejado de gustar o satisfacer personalmente, si no porque en muchas ocasiones aparece dentro de la relación (en ambas personas o solo en una) la sensación de ansiedad ante la separación temporal de la pareja, que de alguna forma casi obliga a quien la padece a buscar permanente y compulsivamente a la otra persona para así compartir cada momento. 

Sucede entonces que se coloca a la pareja en el centro de la propia vida, como si esta empezase y terminase en la otra persona. Esta dinámica relacional se ve reflejada y reforzada por la ideología del amor romántico, entendiendo que el echo de estar en pareja conlleva sentir esta ansiedad de separación. Algunas frases que reflejan el sentido de esta dinámica relacional son: “Sin ti no puedo vivir”, “Necesito verte a todas horas si no no soy feliz”.

Por este ideal del amor romántico, es común confundir la sensación de estar enamorado/a con la angustia que se puede sentir al separarse de la otra persona. Sentir amor por alguien, echarle de menos cuando no estamos cerca, necesariamente no ha de equipararse a dejar de hacer actividades o tareas que enriquezcan el área personal para estar con la otra persona, con la única motivación de calmar esta ansiedad que nace de la separación.

Muchas personas se encuentran con que no sienten esta necesidad de permanecer en todo momento junto al otro, y erróneamente ello puede interpretarse como que la persona no está enamorada realmente ya que mantiene su autonomía y espacio personal.

Aparecen aquí inseguridades y desencuentros dentro de la pareja, ya que no comparten la misma idea de lo que significa estar enamorado/a y estar en pareja. Las consecuencias de esta dinámica relacional basada en la ansiedad que genera la separación son variadas:

  • Se produce una pérdida de la autonomía personal.
  • Los límites personales de cada miembro de la pareja se vuelven confusos. Cuando una de las persona se “olvida de si misma” comienza a no tener presente sus necesidades, llegando incluso a olvidarse de ellas o no sentirlas. Ocurriendo entonces que las necesidades del otro pasan a ser las propias.
  • Esto último se relaciona también con otra de las consecuencias, la pérdida de identidad. Al “perderse en el otro” se desdibuja la propia identidad, perdiendo el sentido de la misma y la noción de quién es uno/a mismo/a.
  • Al refugiarse en la pareja y crear una especie de isla, ocurre que la persona se queda sin la oportunidad de mantener sus relaciones sociales y familiares, perdiendo así una gran fuente de recursos sociales y apoyo social. Lo que puede provocar sentimientos de soledad, que paradójicamente, provocan que la persona se funda más en su relación de pareja.
  • La persona puede experimentar baja autoestima ya que le faltan elementos significativos en su vida, que ha ido perdiendo o ha dejado de desarrollar.
  • También pueden aparecer síntomas psicológicos como ansiedad, ataques de pánico, depresión y estrés entre otros.

Por todo ello lo ideal es hallar el equilibrio. Permitirse disfrutar de la compañía de la otra persona a la vez que no se deja de disfrutar de las propias necesidades, capacidades, habilidades, intereses, relaciones, etc.

Es importante y saludable por ello preguntarse en función de qué motivaciones emocionales organizamos nuestro tiempo, qué lugar ocupa la pareja en nuestra vida, qué lugar ocupan  el resto de relaciones, proyectos laborales, personales, etc.

Codependencia y redes sociales

Según un curioso estudio realizado por la Universidad de Albright en Pensilvania, las personas que a menudo comparten fotos, estados, likes y demás detalles de sus relaciones en redes sociales, suelen estar viviendo relaciones de codependencia (apego afectivo o emocional).

Para la psicóloga Gwendolyn Seidman, autora del estudio, las personas cuya autoestima se basa exclusivamente en el estado de su relación romántica son más propensas a monitorear al otro en la red social, concluyendo además que tener este tipo de conductas revela una baja autoestima y una necesidad absoluta de sobreexponer los afectos.


Logo KW

Remediation of addiction with a 1-2 punch of deep brain stimulation & dopamine receptor antagonists [1154]

de System Administrator - jueves, 12 de marzo de 2015, 15:06

Remediation of addiction with a 1-2 punch of deep brain stimulation & dopamine receptor antagonists

by Greg Bissonette PhD

Pathological changes to synaptic transmission underlie part of the etiology of different neurological and psychiatric diseases including Parkinson’s disease and drug addiction. Deep brain stimulation (DBS) is an effective treatment for tremors associated with Parkinson’s disease.1 Recent optogenetic experiments have shown that both synaptic transmission and addiction-related behaviors are normalized by stimulation of medium spiny neurons (MSNs) through depotentiation of D1 receptor (D1R) expressing neurons in the nucleus accumbens (NAc).

These optogenetic experiments suggest an enticing therapeutic potential. However, optogenetic protocols are not approved for human use. On the other hand, DBS is a U.S. Food and Drug Administration (FDA)-approved treatment for Parkinson’s disease and evidence supports a possible use for DBS in treating addiction.2 However, the therapeutic benefits of DBS are highly transient and therapeutic duration needs to be increased. In a recent article published in Science, Creed, Pascoli and Lüscher demonstrate that a combination of DBS and pharmaceuticals leads to long-term improvement in synaptic transmission and addiction-related behavior. 

The researchers used cocaine locomotor sensitization (a long-term enhancement of locomotor activity after repeated cocaine experience) and AMPA/NMDA receptor ratio (a measure of synaptic potentiation) to investigate addiction-related physiology. Five days of cocaine administration induced locomotor sensitization and increased AMPA/NMDA ratio in mice. Using a combination of optogenetics and pharmacology, Creed et al., were able to show in brain slices that a low stimulation frequency induced long-term depression of excitatory synapses onto D1R-expressing MSNs when used in conjunction with D1R antagonists, SCH23390 or SCH39166. When repeating this in vivo, they were able to show that the combination of low frequency optogenetic stimulation in the NAc shell and infusion of D1-antagonists abolished cocaine locomotor sensitization.

Finally, the researchers demonstrated that either 12-hz DBS or D1-antagonists alone had no impact on locomotor sensitization, but when both treatments were used together, they were able to significantly reduce locomotor sensitization in the animals without impairing the immediate response to cocaine. Importantly, cocaine sensitization in DBS and D1-anatagonist treated mice was still suppressed even if treatment occurred a week before a cocaine challenge, supporting the long-lasting impact of this treatment.

As DBS and D1-antagonist (SCH39166) are FDA-approved for human use, this study supports a potentially powerful role for already available therapies in the treatment of addiction.  These experiments demonstrate a role for DBS in reversing the potentiation of excitatory neurotransmission onto D1R-expressing MSNs in the NAc shell, and suggest a methodology for translating optogenetically realized findings into potential DBS treatment protocols.


Creed M, Pascoli VJ, Lüscher C (2015) Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology. Science 347(6222):659-664. doi: 10.1126/science.1260776

  1. Miocinovic S, Somayajula S, Chitnis S, Vitek JL (2013) History, applications, and mechanisms of deep brain stimulation. JAMA Neurology 70(2):163-171. doi: 10.1001/2013.jamaneurol.45
  2. Williams NR, Okun MS (2013) Deep brain stimulation (DBS) at the interface of neurology and psychiatry. The Journal of Clinical Investigation 123(11):4546–4556. doi: 10.1172/JCI68341



Logo KW

Repairing neurons with light [1587]

de System Administrator - martes, 17 de noviembre de 2015, 18:12

Zebrafish neurons projecting to the brain (green). One neuron expresses a light-activatable enzyme (red). Scientist were able to stimulate the regeneration of injured neurons using optogenetics. Credit: Helmholtz Zentrum München

Bright prospects: Repairing neurons with light

by Editor

The nervous system is built to last a lifetime, but diverse diseases or environmental insults can overpower the capacity of neurons to maintain function or to repair after trauma. A team led by Dr. Hernán López-Schier, head of the Research Unit Sensory Biology and Organogenesis at Helmholtz Zentrum München, now succeeded in promoting the repair of an injured neural circuit in zebrafish.

Key for the researchers’ success was the messenger molecule cAMP, which is produced by an enzyme called adenylyl cyclase. For their experiment, the scientist used a special form of this enzyme which is inducible by blue light. Using optogenetics, the scientists are able to specifically modulate the production of cAMP in cells expressing this enzyme by the use of blue light.

The researchers used this system in zebrafish larvae which had interrupted sensory lateralis nerves. These nerves normally communicate external sensory signals to the brain, but cannot normally repair after injury. “However, when blue light was shone on severed nerves that expressed a photoactivatable adenylyl cyclase, their repair was dramatically increased,” remembers PhD student Yan Xiao who is the first author of the study. “While untreated nerve terminals only made synapses again in five percent of the cases, about 30% did after photostimulation.” In simple terms: the scientists were able to stimulate the repair of a neuronal circuit by elevating cAMP with blue light.

“Optogenetics have revolutionized neurobiology, since the method has already been used to modify for instance the electrical activity of neurons. However, our results show for the first time how the repair of a complex neural circuit in a whole animal can be promoted remotely by the use of light”, explains López-Schier.

But the head of the study thinks that this is only the beginning: “Our results are a first step. Now we would like to investigate, whether these results can be extrapolated beyond single neurons in zebrafish, to more complex neuronal circuits of higher animals.” The scientist could think of using this method for future therapeutic approaches for the treatment of neuropathies like those occurring in the wake of Diabetes and other diseases.

Note: Material may have been edited for length and content. For further information, please contact the cited source.


Similar Stories On …


Fiberoptics, detail. Credit: davidgwynn /

Optogenetics: Harvesting the Power of Light for Neuronal Control

by Jeanene Swanson

With accolades like “method of the year” and “breakthrough of the decade,” it’s easy to assume that optogenetics—a scientific technique for turning neurons on and off using light—is, indeed, a game-changing technology. The technique has already shown promise for treating blindness,1 quieting seizures,2 and homing in on the genetic causes of brain disorders like Parkinson’s disease.3 It has also played a large role in enabling the NIH’s BRAIN Initiative, which aims to map the activity of every cell in the human brain. But, has it lived up to its hype? And what does the future hold for using optogenetics beyond simply studying how the brain works—can it also be useful in treating diseases as diverse as autism, PTSD, and depression?

The basics

Optogenetics uses light to control neurons that have been made artificially sensitive to illumination. In the lab, scientists employ viruses to introduce genes for light-sensitive proteins into neurons. First discovered in microbes, these naturally occurring proteins, called opsins, react to light. Some proteins react to light by turning neurons on, or prompting them to fire, while others turn off neuronal activity. In this way, optogenetics targets specific, modified neurons in order to discover their function and how they’re connected within larger neuronal networks.

In 2005, Dr. Karl Deisseroth, a bioengineering professor at Stanford University and a member of the Howard Hughes Medical Institute, and then-graduate students Dr. Edward Boyden (now at MIT) and Dr. Feng Zhang (now also at MIT), published the first paper demonstrating the use of microbial opsin genes to control neuronal activity.4 In 2010, Nature Methods named optogenetics “Method of the Year,”5 and Science called it one of several “Breakthroughs of the Decade.”6

Current approaches

Optogenetics has indeed, come a long way since 2005. Its most valuable feature as a cutting-edge neuroscience tool is that it offers an unmatched level of precision in its ability to affect a specific neuron at a specific time.

Opsin proteins come from bacterial or algal genomes, where they fulfill their roles as light-activated membrane ion channels. Opsin genes are introduced into specific neurons via transfection where a virus transfers both the gene and its promoter into the host cell’s genome. “Thousands of labs around the world are now using these optogenetic techniques, and thousands of papers have been published with these methods,” Deisseroth says.

There are many tools in use, including engineered opsins that can be targeted to single neurons, groups of neurons, and connections between regions of the brain. Modified opsins include those engineered to recognize different colors of light (red, blue, or yellow); those that are activated quickly or slowly; and those that simply turn neurons on or off, resulting in a binary circuit that has many futuristic applications such as altering memories. Opsin-targeting strategies, Deisseroth says, are also using specialized viruses that only insert the opsin gene into cells of interest. “A key moment was when we were able to solve the structure of the microbial channel opsin, which allowed us to engineer it at will.”7,8,9

Recently, Ed Boyden’s group at MIT developed a “fast” opsin called Chronos,10 as well as two more opsins that are sensitive to red light, Chrimson and Jaws,11 which activate and silence neurons respectively. It’s nice, Boyden notes, “because it goes deep in tissue,” reaching regions that were previously untouchable by standard fiberoptic tools consisting of lasers that send light to very small implanted optical fibers.12 “One of the obstacles to applying optogenetics is how to deliver light deep in the tissue or body,” Dr. Hiromu Yawo, a neuroscientist doing cutting-edge opsin engineering at Tohoku University, says. Fiber optic light sources are mainly used today; however, Deisseroth indicates that two-photon “spots” of light have been successfully used in living animals.


When dreaming about the future of optogenetics, it’s important to consider that it is still early days. “We don’t have good maps of the brain, so using optogenetics is difficult for many scientific questions,” Boyden says. “We don’t often know where to stimulate.”

Activating deep brain tissue is also problematic. “As the visible light is absorbed by the tissue, the light sources have to be embedded in it for the optogenetic manipulation of deep tissue,” Yawo says. Infrared can go deep, but to date there is no opsin sensitive to this type of light. Additionally, viral vectors are difficult to apply to humans; neuronal selectivity depends on targeted promoters reaching their place in the genome. According to Yawo, these promoters are “mostly unidentified” in humans. “Even if identified, [the gene] is often too large to deliver efficiently or it is too weak to produce enough number of molecules to generate [a] response.”

There’s also cost. Says Deisseroth, “the main disadvantages include the light power requirements associated with targeting large numbers of individually specified cells. That requires fairly advanced and costly lasers.” However, standard optogenetics control is “actually relatively easy and cheap to do now, and we run training classes at Stanford to help people out in getting started,” he says.


While it has been mainly used as a way to study how individual neurons fire alone or in concert with other neurons or circuits of neurons, a slew of recent papers have helped elucidate pathways of many different diseases. For instance, research has demonstrated the use of optogenetics on D1 and D2 cells (types of dopamine receptors) in the striatum13 and subthalamic nucleus14 in mice, as a way to explore their role in Parkinson’s disease. Other work has involved finding what cells can be manipulated to alter fear memories, applicable to treating PTSD and other illnesses that revolve around conditioned fear responses;15elucidating neural networks involved in autism;16 and testing the causal link between dopamine expression and positive reinforcement in mental health disorders like addiction17and depression.18 Clinically, optogenetics could theoretically be used to treat diseases as diverse as Parkinson’s disease, PTSD, autism, schizophrenia, addiction, and depression, to name a few.

The future of optogenetics seems wide open. GenSight Biologics19, a company founded by leaders in the fields of ophthalmology and optogenetics, is aiming to use the technique to treat blindness caused by diseases resulting from cell loss in the retina, including glaucoma and retinal pigmentosa. Using optogenetics on other cell types has already gained some traction in research labs, with cardiac cells and stem cells being some of the prime non-neuronal targets. It’s also been adapted to study biochemical, instead of electrical, events, “opening the door to control of specific events in any cell in biology,” Deisseroth says. According to Yawo, events as diverse as “ionic microenvironment, signal transduction, enzymatic activity, and gene regulation are now under the targets of optogenetics.”

Optogenetics is being used in conjunction with other technologies too, to speed up the translation from lab to clinic. In a recent Science paper,20 scientists at the University of Geneva used a combination of deep brain stimulation—a proven tool to treat Parkinson’s disease—and a drug to block specific dopamine receptors to produce an “optogenetic-like” effect in lab mice. Ultimately, the mice’s cocaine use was reduced, underscoring the possibility of achieving the same effect in humans without having to solve the technological hurdles that applying optogenetics poses.

“The future is continued widespread use as a research tool,” Deisseroth says, to advance our still-small understanding of how individual neurons function in larger circuits. Indeed, when it comes to the brain, the whole is much greater than the sum of its parts, and optogenetics might be the best bet for probing not only deep, but far and wide.

Editor’s Note: Listen to Ed Boyden discuss his research in The Scientist’s on-demand webinar:New Models and Tools for Studying Synaptic Development and Function.


  1. Picaud S et al. (2013) Retinitis pigmentosa: eye sight restoration by optogenetic therapy. [Article in French] Biol Aujourdhui 207(2):109-121.
  2. Kullmann DM et al. (2012) Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med 4(161):161ra152.
  3. Vazey EM, Aston-Jones G (2013) New tricks for old dogmas: optogenetic and designer receptor insights for Parkinson's disease. Brain Res 1511:153-163.
  4. Deisseroth K et al. (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263-1268.
  5. Editorial (2011) Method of the Year 2010. Nat Methods 8(1).
  6. News Staff (2010) Insights of the decade. Stepping away from the trees for a look at the forest. Introduction. Science 330(6011):1612-1613.
  7. Staff (2012) Channelrhodopsin's crystal structure. Nat Methods 9(224).
  8. Deisseroth K et al. (2014) Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 344(6182):420-424.
  9. Hegemann P et al. (2014) Conversion of Channelrhodopsin into a Light-Gated Chloride Channel. Science 344(6182):409-412.
  10. Boyden ES et al. (2014) Independent optical excitation of distinct neural populations. Nat Methods 11(3):338-346.
  11. Boyden ES et al. (2014) Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat Neurosci (8):1123-1129.
  12. Deisseroth K et al. (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4(3):S143-156.
  13. Kreitzer AC et al. (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–626
  14. Deisseroth K et al. (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324(5925):354-359.
  15. Deisseroth K et al. (2011) Dynamics of Retrieval Strategies for Remote Memories. Cell 147(3):678-689.
  16. Deisseroth K et al. (2014) Natural neural projection dynamics underlying social behavior. Cell 157(7):1535-1551.
  17. Deisseroth K et al. (2011) Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72(5):721-733.
  18. Deisseroth K et al. (2013) Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493(7433):537-541.
  19. GenSight
  20. Creed M, Pascoli VJ, Lüscher C (2015) Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology. Science 347(6222):659-664.

Similar Stories On …



Logo KW

Reptiles, emociones y cogniciones [1209]

de System Administrator - domingo, 19 de abril de 2015, 22:02

Reptiles, emociones y cogniciones

por Dr. Roberto Rosler

Seguinos en:

Logo KW

Researchers create 'mini-brains' in lab to study neurological diseases [1670]

de System Administrator - lunes, 15 de febrero de 2016, 18:39

Researchers create 'mini-brains' in lab to study neurological diseases

February 12, 2016 | by NeuroScientistNews

Neurons (red) and astrocytes (green) derived from human neural stem cells growing in culture. Confocal micrograph.

Credit: Steven Pollard, Wellcome Images

Use of human-derived structures could allow for better research and reduce animal testing -

Researchers at the Johns Hopkins Bloomberg School of Public Health say they have developed tiny "mini-brains" made up of many of the neurons and cells of the human brain—and even some of its functionality—and which can be replicated on a large scale.

The researchers say that the creation of these "mini-brains," which will be discussed at the American Association for the Advancement of Science conference in Washington, DC, USA, on Feb. 12 at a press briefing and in a session on Feb. 13, could dramatically change how new drugs are tested for effectiveness and safety, taking the place of the hundreds of thousands of animals used for neurological scientific research in the United States. Performing research using these three-dimensional "mini-brains"—balls of brain cells that grow and form brain-like structures on their own over the course of eight weeks—should be superior to studying mice and rats because they are derived from human cells instead of rodents, they say.

See Also: Stem cells from teeth can make brain-like cells

"Ninety-five percent of drugs that look promising when tested in animal models fail once they are tested in humans at great expense of time and money," says study leader Thomas Hartung, MD, PhD, the Doerenkamp-Zbinden Professor and Chair for Evidence-based Toxicology at the Bloomberg School. "While rodent models have been useful, we are not 150-pound rats. And even though we are not balls of cells either, you can often get much better information from these balls of cells than from rodents.

"We believe that the future of brain research will include less reliance on animals, more reliance on human, cell-based models."

Hartung and his colleagues created the brains using induced pluripotent stem cells (iPSCs). These are adult cells that have been genetically reprogrammed to an embryonic stem cell-like state and then are stimulated to grow into brain cells. Cells from the skin of several healthy adults were used to create the mini-brains, but Hartung says that cells from people with certain genetic traits or certain diseases can be used to create brains to study various types of pharmaceuticals. He says the brains can be used to study Alzheimer's disease, Parkinson's disease, multiple sclerosis and even autism. Projects to study viral infections, trauma and stroke have been started.

Hartung's mini-brains are very small—at 350 micrometers in diameter, or about the size of the eye of a housefly, they are just visible to the human eye—and hundreds to thousands of exact copies can be produced in each batch. One hundred of them can grow easily in the same petri dish in the lab. After cultivating the mini-brains for about two months, the brains developed four types of neurons and two types of support cells: astrocytes and oligodendrocytes, the latter of which go on to create myelin, which insulates the neuron's axons and allows them to communicate faster.

The researchers could watch the myelin developing and could see it begin to sheath the axons. The brains even showed spontaneous electrophysiological activity, which could be recorded with electrodes, similar to an electroencephalogram, (EEG). To test them, the researchers placed a mini-brain on an array of electrodes and listened to the spontaneous electrical communication of the neurons as test drugs were added.

Learn More: Stem cells in the brain: limited self-renewal

"We don't have the first brain model nor are we claiming to have the best one," says Hartung, who also directs the School's Center for Alternatives to Animal Testing.

"But this is the most standardized one. And when testing drugs, it is imperative that the cells being studied are as similar as possible to ensure the most comparable and accurate results."

Hartung is applying for a patent for the mini-brains and is also developing a commercial entity called ORGANOME to produce them. He hopes production can begin in 2016. He says they are easily reproducible and hopes to see them used by scientists in as many labs as possible. "Only when we can have brain models like this in any lab at any time will we be able to replace animal testing on a large scale," he says.


Página:  1  2  3  (Siguiente)